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Abstract. A theoretical study of optical absorption and emission measurements of Fe2+ as a
substitutional impurity in InP and GaP is presented. A new interpretation of the low-temperature
absorption spectrum is proposed based on a weak Jahn–Teller interaction between the electronic
excited states and a local gap mode of �5 symmetry. The model also includes the crystal potential,
hybridization with the orbitals of the ligands of the host crystal, spin–orbit interaction and a weak
dynamic Jahn–Teller coupling of the orbital ground state of Fe2+ with transverse acoustic phonons
of �3 symmetry. The theoretical model describes with good accuracy the measured positions and
relative intensities of the spectral lines. In addition, the mass dependence of the local gap mode
of �5 symmetry reproduces the general features of the fine structures associated with the isotopic
shifts of the zero-phonon line and the contribution to the isotopic shifts arising from the difference
in zero-point energy between the initial and final states of the transition is evaluated.

1. Introduction

The study of transition metal impurities in III–V semiconductors is of great practical and
fundamental interest. The presence of deep iron acceptors in these materials can influence
strongly their electrical and optical properties and have an appreciable effect on the performance
of devices based on these compounds. For example, iron doping can produce semi-insulating
materials, such as InP:Fe, that are of interest as high-resistivity substrates for epitaxial devices.
The unintentional inclusion of iron in III–V compounds is also known to reduce the efficiency
of light-emitting diodes and a detailed knowledge of the spectroscopic characteristics of iron
in III–V materials is, therefore, highly desirable.

It is by now well known [1] that the iron impurity enters the lattice substitutionally,
occupying random cation sites. Different charge states of iron occur in III–V semiconductors
[1, 2]. In addition to the neutral Fe3+ (3d5) state, the presence of the one-electron trap state
Fe2+ (3d6) has been detected, as well as, on occasions, the Fe+ (3d7) state. Often, the Fe2+

state is dominant and gives rise to internal transitions within the d shell of the impurity that are
observable with luminescence or optical absorption techniques. This was first demonstrated
by Koschel et al [1] who observed, in the photoluminescence spectrum of InP:Fe, four well
resolved zero-phonon lines with energies and intensities in agreement with transitions between
spin–orbit-split levels of Fe2+ in a crystal field of Td symmetry.

Similar conclusions were obtained by West et al [3] who performed detailed piezo-
spectroscopic and Zeeman studies of the photoluminescence of GaP:Fe. Again four zero-
phonon lines were observed that were attributed to transitions between crystal-field states
of Fe2+ in sites with Td symmetry. More importantly, these authors noted for the first time
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that crystal-field theory did not quite predict the energy splittings of the Fe2+ levels to within
experimental error. They indicated that this may be due to the presence of a weak Jahn–Teller
(JT) coupling with a phonon of low energy and made a crude estimate of the strength of the
coupling. Subsequently, the existence of four zero-phonon lines was confirmed by Leyral
et al [2, 4] for Fe2+ in InP and GaAs and by Shanabrook [5] for Fe2+ in GaP.

In the 1990s, the availability of high-purity samples with controlled concentrations of
impurities and the development of high-resolution Fourier transform infrared spectrometers
led to a revival of interest in the problem of Fe-doped III–V compounds [6–9]. Much more
detailed studies of the optical absorption spectra of Fe-doped III–V materials were performed
and additional lines linked to internal transitions of the Fe2+ levels were observed. In addition
a fine structure originating from different iron isotopes has also been resolved [9].

A consequence of the more detailed experimental data is that it became clear that pure
crystal-field theory cannot fully explain the spacings of zero-phonon lines and the isotopic
fine structure. The existence of a Jahn–Teller coupling between the electronic states of
the Fe2+ substitutional impurities and phonons or local vibrational modes of the host III–
V semiconductor was investigated by a number of people [10–13]. All these papers focused
on only some of the experimental data but did not attempt to explain with a single model the
optical absorption, photoluminescence and isotopic measurements.

In this paper, we present a complete analysis of the emission and absorption spectra
of InP:Fe2+ and GaP:Fe2+ using a coherent model that includes hybridization with the ligand
orbitals, spin–orbit interaction and electron–phonon coupling. We propose a new interpretation
of experimental data and show that the orbital excited states of Fe2+ couple with a local gap
mode of �5 symmetry. The inclusion of this mode in our calculation is essential for explaining
the observed isotopic effect. In addition, we include a weak dynamic JT interaction between
the electronic ground states and a transverse acoustic phonon of�3 symmetry. We also evaluate
the contribution to the isotopic shifts arising from the difference in zero-point energy between
the initial and final states of the transition.

The paper is organized as follows. In section 2 we describe the theoretical model used
to treat the electron–phonon interaction. Section 3 is devoted to a comparison of our results
for the energies and intensities of the electric-dipole-allowed transitions with experiments.
Finally, our conclusions are given in section 4.

2. Theoretical formalism

In semiconductors having the zinc-blende structure the magnetic ions are located at cation
sites whose symmetry is tetrahedral (Td). Within the framework of crystal-field theory, the
ground term 5D of the free Fe2+ ion separates into an orbital doublet 5�3 and a triplet 5�5, the
former lying below the latter in energy [14]. The energy difference between these two orbital
multiplets is denoted by �. The spin–orbit interaction further splits the tenfold-degenerate
5�3 multiplet into five levels of symmetries �1, �4, �3, �5 and �2, listed in order of increasing
energy. The excited 5�5 multiplet separates into levels of increasing energy �′

5, �′
4, �′

3, �′′
5 ,

�′′
4 and �′

1 (see figure 1).
The effective electronic Hamiltonian for the ion is

Hion = H0 + Vc(Td) + λL · S − ρ

[
(L · S)2 +

1

2
L · S − 1

3
L(L + 1)S(S + 1)

]
(1)

where H0 is the Hamiltonian of the free ion omitting the spin–orbit and spin–spin interactions
[15] described respectively by the last two terms in equation (1) and the tetrahedral potential
Vc(Td) leads to the separation � between the �3 and �5 multiplets [14]. Symmetry arguments
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Figure 1. A schematic diagram of the energy levels of Fe2+ in a crystal field of tetrahedral symmetry
(Td) including the splittings due to the spin–orbit interaction.

show that there are, in principle, two different effective spin–orbit coupling constants: λ1

corresponding to matrix elements within the �5 orbital multiplet of the impurity and λ2 for
matrix elements mixing the �5 and �3 orbital states. They reflect the fact that the d electrons
of the magnetic impurity at cation sites are not completely localized and spend part of their
time in the vicinity of the anions. The electronic spin–orbit basis states are generated as
products of wave functions involving orbital and spin parts. Figure 1 shows the symmetry of
the twenty-five spin–orbit-split states of Fe2+.

The theoretical formalism used to treat the dynamic JT coupling of the 3d electrons of the
magnetic ion with vibrational modes of the crystal is similar to that described in reference [16].
This model has been applied successfully to the interpretation of the near-infrared absorption
and emission data for doubly ionized iron in cubic II–VI semiconductors (CdTe, ZnTe, ZnSe
and ZnS [17]). It is now extended to treat InP:Fe2+ and GaP:Fe2+.

For the purpose of this investigation, the vibrational modes of the crystal are best classified
according to the site symmetry of the magnetic ion rather than according to the space group of
the host. From symmetry considerations, it follows that matrix elements of the JT interaction
between states of the �3 multiplet vanish for a phonon mode of symmetry �5 but not for a
phonon of symmetry �3 while matrix elements connecting states in the �5 multiplet need not
vanish for phonons of symmetries �3 and �5. Therefore we write the phonon and electron–
phonon coupling Hamiltonians as

Hp = h̄ω3

2∑
i=1

(
a

†
i ai +

1

2

)
+

2∑
i=1

(a
†
i + ai)U

(3)
i + h̄ω5

3∑
j=1

(
b

†
j bj +

1

2

)
+

3∑
j=1

(b
†
j + bj )U

(5)
j .

(2)

Here ai (a
†
i ) is a destruction (creation) operator for a phonon belonging to the ith row of �3.

A similar statement is applicable to bj , where j labels the rows of �5; h̄ω3 and h̄ω5 are the
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energies of phonons of �3 and �5 symmetries, respectively. The 5 × 5 matrices U
(3)
i and U

(5)
j

are electronic operators whose elements are given by group theoretical considerations [16] and
are proportional to E

(3)
JT or E(5)

JT , the JT energies for the �3 and �5 phonons, respectively. The
phonon states and their overtones are classified according to the irreducible representations of
the group Td and are listed in references [16, 18].

To find the eigenvalues of the total Hamiltonian operator (H = Hion + Hp) we start from
a set of symmetry-adapted wave functions which are linear combinations of electronic and
vibrational states with coefficients given by the Clebsch–Gordan coefficients for the group
Td [19]. At this stage, it is worth noticing that, even though the �5 phonons do not couple to
the electronic�3 states viaHp, it is necessary to include in our basis the vibronic states involving
electronic levels in the �3 manifold and phonons of �5 symmetry. The reason for this is that
the spin–orbit interaction between vibronic states originating from the �3 and �5 multiplets
alters the spacing of the vibronic levels after modification by the JT interaction. However, a
good approximation is obtained by restricting the basis to the states containing overtones of
only one kind of vibrational mode at a time (�3 or �5). With the set of basis vectors obtained in
this fashion, the Hamiltonian appears in blocks associated with the irreducible representations
�i (i = 1, 2, . . . , 5) of Td in the notation of Koster et al [19].

It will be shown in section 3 that, in the cases of InP:Fe2+ and GaP:Fe2+, the optical
measurements demonstrate clearly that there is a weak Jahn–Teller interaction between the
excited orbital multiplet of Fe2+ and a local gap mode of symmetry �5 in addition to a weak
JT interaction between the orbital ground state of Fe2+ and a �3 phonon of the host crystal.

3. Discussion and comparison between theory and experiment

A large number of theoretical [10–12] and experimental [6–9] investigations have been devoted
to the study of the 2+ charge state of iron in III–V semiconductors such as InP, GaP and GaAs.
In the present section we analyse the most recent high-resolution data of Pressel et al [7]
on InP:Fe2+ and of Rückert et al [9] on GaP:Fe2+ in the framework of the theoretical model
described in section 2. Most previous theoretical papers have focused on the interpretation of
the emission spectrum related to electric-dipole transitions from the �′

5 spin–orbit-split state
(see figure 1) to the ground state �1. However, very little consideration [11] has been given to
the absorption measurements. The vibronic model presented in this paper accounts for both
emission and absorption spectra and also reproduces the general features of the fine structure
associated with the isotopic shifts of the zero-phonon line (�1 ↔ �′

5 (1 ↔ 5′) transition).
We first discuss the case of InP:Fe2+ and look at the low-temperature absorption spectrum.

At low temperature, the infrared spectrum consists mainly of three lines at 2843.9 (line I),
3117.0 (line II) and 3135.9 (line III) cm−1. Lines I and III are very narrow, sharp lines while
line II has a much larger full width at half-maximum (FWHM). In addition, line I exhibits a
fine structure that has been attributed to the different isotopes of Fe2+ impurity. This line is
the zero-phonon �1 → �′

5 transition but the interpretation of the other two lines is still open
to conjecture.

In agreement with earlier work [16], we take as phonon mode interacting with the orbital
ground state a transverse acoustic phonon (TA(L)) of �3 symmetry and energy h̄ω3 = 55 cm−1

[20]. In addition, in order to explain the low-temperature spectrum we introduce a JT interaction
with a local gap mode of�5 symmetry. The introduction of this mode is also essential to explain
the observed isotopic shifts of the zero-phonon line (2843.9 cm−1). Within this framework we
propose an interpretation of the absorption spectra which differs from that of Pressel et al [7]
in the attribution of the absorption lines at 3117 cm−1 and 3135.9 cm−1. We assume that the
first of these lines corresponds to a transition (1 → 5′a) from the ground state �1 to a vibronic
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state involving the electronic �′
5 state and the first overtone of the local gap mode and that the

second line at 3135.9 cm−1 corresponds to the electronic transition 1 → 5′′.
This new interpretation is supported by the different lineshapes of the two lines and their

relative intensities. At low temperature, zero-phonon lines have very sharp, narrow line-
shapes but transitions involving vibronic states tend to have broader FWHM. This confirms
our assignment of lines I and III to zero-phonon lines and of line II to a transition involving
vibronic states.

Before discussing the numerical calculations for the full spectrum (at any temperature),
it is of interest to first investigate lines II and III with a simple analytical model that shows
clearly the interrelationship between the energies of these lines, the JT energy and the gap mode
energy. This is done by restricting the Hamiltonian basis to a subset of states containing only
the two symmetry-adapted wave functions |ε′′; A(5)(0)〉 and |ε′; E(5)(1)〉. These two states
are the predominant contribution to the 5′a and 5′′ levels. The notation used here is that of
reference [16]. The states are products of electronic and vibrational states; ε′ and ε′′ are the
electronic states �′

5 and �′′
5 , A(5)(0) is the phonon vacuum state (of symmetry �1) and E(5)(1) is

the first overtone of the �5 phonon, belonging to the irreducible representation �3 (for details,
see reference [16]). The zero of energy is taken at the �1 ground state. The Hamiltonian matrix
in this reduced basis is then given by(

� − 2λ1

√
6K/5√

6K/5 � + 3λ1 + h̄ω5

)
(3)

where K is related to the JT energy by K2 = 3
2 h̄ω5EJT. It should be mentioned that these

two lines are resonant lines if the energy of the gap mode, h̄ω5, is comparable to −5λ1.
The diagonalization of this matrix leads to the energies EII and EIII of lines II and III. The
expressions for EII and EIII can then be used to obtain information on the dependence of EJT on
the gap mode energy, h̄ω5. From the relationship between K and EJT and the energy difference
�E = EIII − EII we finally obtain

EJT = 25

36

(�E)2 − (5λ1 + h̄ω5)
2

h̄ω5
. (4)

From the experimental data, we know that the energy difference between lines II and III is
18.9 cm−1. Fixing �E at 18.9 cm−1 and taking approximate values � = 2950.0 cm−1 and
λ1 = −56.0 cm−1 [21], we can now look at the evolution of EJT as a function of the gap mode
energy, h̄ω5. This is displayed in figure 2(a). Moreover, from the eigenstates of the above
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Figure 2. The evolution of (a) EJT and (b) the intensity ratio as functions of the gap mode energy,
h̄ω5.



2696 D Colignon et al

matrix, we can obtain the dependence of the intensity ratio of line III and to line II on h̄ω5, i.e.,

I = 9h̄ω5EJT + 25(� − 2λ1 − EIII)
2

9h̄ω5EJT + 25(� − 2λ1 − EII)2
. (5)

This is displayed in figure 2(b). These two figures can be used to get an idea of the approximate
values of EJT and h̄ω5 that need to be used in the full numerical calculation. In order to explain
the isotopic shifts of line I, it is most favourable to have as large a JT energy as possible [13].
At the same time, one must also reproduce the intensity ratio of line III to line II. As figure 2(b)
shows, the intensity ratio decreases rapidly and from figure 2(a) it appears favourable to have
h̄ω5 close to 280 cm−1. After making various fine-tuned adjustments to the parameters, this
is indeed the value that we will adopt in the numerical calculations.

We are now in a position to discuss the exact numerical calculation and the fit to the
complete spectrum (including spectral lines observed at higher temperature). Details of the
vibronic basis are given in reference [16]. The Hamiltonian is first diagonalized using the
starting values of the parameters mentioned in the previous discussion and the final values
of the parameters are obtained by a self-consistent fitting procedure given in reference [16].
We note that to obtain convergence for the energies of the vibronic states it was necessary to
include overtones up to order n = 12. The physical parameters obtained from the comparison
between theory and experiment are listed in table 1. In the first column of table 1 we display our
assignment of the transitions. The notation used to designate the energy levels of the system is
as follows: we give their symmetry by the index 1, 2, . . . , 5 of the irreducible representation
in the notation of Koster et al [19] and an alphabetical index which simply gives the order of
increasing energy. The experimental and calculated values of the transition energies are listed
in columns 2 and 3 of table 1, respectively. Finally, the last column gives the intensities of
the electric-dipole-allowed transitions relative to that of the zero-phonon line (1 ↔ 5′). These
values do not take into account the thermal population effects that have to be included for all
transitions not originating from the ground state. At T = 16 K, the population factors are 0.3,
0.1 and 0.02 for transitions originating from �4, �3 and �5, respectively. Finally, we point out

Table 1. Comparison between the calculated and experimental energies in InP:Fe2+. The last
column gives the calculated relative intensities, taking as unity the intensity of the reference
line at 2843.9 cm−1. Parameters: � = 2946.3 cm−1, λ1 = −56.4 cm−1, λ2 = −76.8 cm−1,
ρ = 0.95 cm−1, h̄ω3 = 55.0 cm−1, E(3)

JT = 4.75 cm−1, h̄ω5 = 280.0 cm−1 and E
(5)
JT = 0.82 cm−1.

Experimental Calculated Relative
Transition energy (cm−1) energy (cm−1) intensity

5 → 5′ 2801.8 2802.5 0.90
3 → 5′ 2819.7 2818.9 1.00
4 → 5′ 2830.2 2830.2 2.00
1 → 5′ 2843.9 2843.9 1.00
3 → 4′ 2938.0 2841.5 1.23
4 → 4′ 2949.0 2952.8 1.37
4 → 3′ 2960.1 0.0002
5 → 5′a 3074.0 3075.6 0.14
3 → 5′a 3092.0 3092.0 0.44
4 → 5′a 3103.3 3103.3 0.53
4 → 5′b 3103.6 0.57
1 → 5′a 3117.0 3117.0 0.54
4 → 5′′ 3122.2 3122.2 1.00
4 → 4′′ 3131.6 1.73
1 → 5′′ 3135.9 3135.9 0.98
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that the results of table 1 differ in one more respect from the interpretation of Pressel et al [7].
Pressel et al assign the �4 → �′

3 transition to a weak line observed in their spectrum at 2874
cm−1. This interpretation requires that the �′

3 state lie below the �′
4 state, in contradiction with

predictions of crystal-field theory. However, our calculation leads to an energy of 2960 cm−1

for the �4 → �′
3 transition but our evaluation of intensities predicts that this line is far too

weak to be observed. In addition we found that the �′
3 state always lies above the �′

4 state in
agreement with the conclusions of reference [11].

It is important to note that the energy of the local gap mode used to fit the absorption
spectrum has been taken equal to h̄ω5 = 280 cm−1. This is lower than the energy (295 cm−1)
quoted by Pressel et al and obtained from the emission data. This change in energy can be
related to the difference in the electronic charge distributions of the excited (5�5) and ground
(5�3) orbital multiplets, respectively [22]. The frequencies 280 cm−1 and 295 cm−1 are those
of the gap mode of the most abundant stable isotope of Fe (i.e., 56Fe) in its excited and ground
state, respectively. They depend on the isotopic mass of the Fe2+ impurity and will contribute
to the isotopic shift of the zero-phonon line. To describe the mass dependence of the gap mode
frequency we use the MX4 molecular model [13, 23]. This model assumes a central atom of
mass M (i.e., Fe) surrounded by a tetrahedral cage of nearest-neighbour cations of mass M−
(i.e., P). The vibrational modes of the MX4 molecule are classified according to the irreducible
representations of Td as �1 + �3 + 2�5 but, in the �1 and �3 mode, the central atom remains
stationary while this is not the case for the �5 modes whose frequencies depend on M . If bond
bending is neglected, the frequency of one of the �5 modes vanishes while that of the other �5

mode is

ω(�5) =
[

kr

M−

(
1 +

4M−
3M

)]1/2

. (6)

Here kr is the bond-stretching force constant. The values of kr , obtained from the frequencies
quoted above, are k

g
r = 91.3 N m−1 and ke

r = 82.2 N m−1, for the ground and excited states
respectively. With these values of kr one can the obtain the frequencies of the gap modes for
the other stable isotopes of Fe. For example, for 54Fe, we get h̄ω5 = 297.159 cm−1 for the
ground state and 281.961 cm−1 for the excited state.

With this information we can evaluate the two contributions to the isotopic shift of the zero-
phonon line. The first contribution comes from the JT interaction and is obtained numerically.
For InP:Fe2+, with the parameters used in this paper, this leads to an isotopic shift between
56Fe and 54Fe of 0.015 cm−1, much smaller than the observed isotopic shift of 0.31 cm−1.
However, there is also a contribution from the difference in zero-point energy between the
initial and final states of the transition, due to the different electronic charge distributions in
those electronic states, i.e., the different force constants k

g
r and ke

r . For 56Fe, the zero-point
contribution to the energy of line I is 3

2 (280 − 295) = −22.5 cm−1 whereas for 54Fe it is
−22.797 cm−1. This means that the zero-phonon transition for 54Fe is shifted downwards by
0.297 cm−1 compared to the 56Fe zero-phonon line.

A similar interpretation is applied to the case of GaP:Fe2+ and the results and parameters are
shown in table 2. In this case again, the results are in good agreement with experiment except
for one major discrepancy concerning the transitions 3 → 4′ and 4 → 4′. Our calculation
predicts these transitions at energies 3452.0 cm−1 and 3463.3 cm−1 whereas the observed
energies are 3405 and 3416 cm−1, respectively. However, this discrepancy could be explained
by the fact that, as mentioned by Rückert et al [9], this region of the spectrum is obscured by
instabilities in the spectral characteristics of their spectrometer.

Finally, we comment on the values of the spin–orbit coupling constants λ1 and λ2. The
magnitudes of these two constants both decrease compared to the free-ion value. The ratio
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Table 2. Comparison between the calculated and experimental energies in GaP:Fe2+. Parameters:
� = 3458.27 cm−1, λ1 = −62.1 cm−1, λ2 = −80.3 cm−1, ρ = 0.95 cm−1, h̄ω3 = 83.0 cm−1,
E

(3)
JT = 9.0 cm−1, h̄ω5 = 310.0 cm−1, E(5)

JT = 0.76 cm−1.

Experimental Calculated Relative
Transition energy (cm−1) energy (cm−1) intensity

5 → 5′ 3302.5 3303.0 0.60
3 → 5′ 3318.7 3318.2 0.86
4 → 5′ 3329.5 3329.5 2.06
1 → 5′ 3342.3 3342.3 1.00
3 → 4′ 3405.0 3452.0 1.35
4 → 4′ 3416.0 3463.3 1.36
4 → 3′ 3469.6 0.0001
5 → 5′a 3605.0 3605.5 0.17
3 → 5′a 3621.0 3620.7 0.54
4 → 5′a 3632.0 3632.0 0.58
4 → 4′a 3632.2 0.84
1 → 5′a 3644.8 3644.8 0.59
3 → 5′′ 3639.5 0.84
4 → 5′′ 3650.8 0.96
4 → 4′′ 3659.1 1.69
1 → 5′′ 3663.6 3663.6 0.94

λ1/λfree ion = 0.56 (InP:Fe) and 0.62 (GaP:Fe) is much smaller than in the case of II–VI
semiconductors [24]. This ratio is a measure of the degree of covalency of the Fe–P bonds
and, following the theory of Vallin and Watkins [21], the ratio 0.56 (0.62) means that the d
electrons of the Fe ion spend 56% (62%) of their time in the vicinity of the magnetic impurity
and 44% (38%) of the time in the vicinity of the phosphorus atoms. The theory of Vallin and
Watkins allows an analytic evaluation of λ1 and λ2 if one knows the values ζd and ζL of the
one-electron spin–orbit coupling constants of the impurity and the ligands. In our case the
Vallin and Watkins theory would predict

λ1 = −0.205(ζd − 0.51ζL) = −56.4 cm−1 (7)

and

λ2 = 0.2(ζd − 0.06ζL) = −77.0 cm−1 (8)

where we have used ζd = 400 cm−1 and ζL = 245 cm−1 [25]. The values of λ1 and λ2

obtained from our self-consistent fitting procedure are in excellent agreement with the values
in equations (7) and (8).

4. Conclusions

We have shown that the vibronic model presented here accounts well for the absorption and
emission spectra of InP:Fe2+ and GaP:Fe2+ if we take into account a weak dynamic Jahn–
Teller coupling of the orbital excited state of the magnetic ion with a local gap mode of �5

symmetry, in addition to the more commonly used interaction between the orbital ground
state and transverse acoustic phonons of �3 symmetry. The inclusion of the gap mode is vital
for explaining the resonant absorption lines and the isotopic shifts of the zero-phonon line.
We proposed a new interpretation of both the emission and absorption spectra of Fe2+ in InP
and GaP, which also accounts for the isotopic shifts of the zero-phonon line observed in this
compound. Finally, the spin–orbit coupling constants deduced from our calculations show that
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the covalent character of the bonds is much more important in III–V compounds than in II–VI
compounds such as ZnS [24].
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